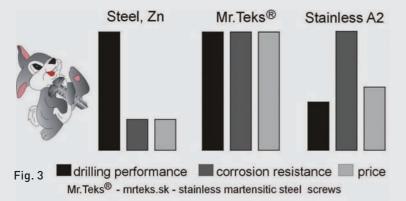

Martensitic Stainless Steel in the Manufacture of Screws

Symbiosis of Performance and Durability


by Jozef Dominik

What is a Stainless Steel of Martensitic Type?

Contrary to austenitic stainless steels, e.g. A2 or A4, in which the basic microstructural element is an austenite (paramagnetic γ -phase with a cubical, face-centered elementary grid - *Fig. 1*) the final microstructure of martensitic steels is created by a martensite (a ferromagnetic α -phase with a cubical spatially-centered elementary grid - *Fig. 2*) which is a product of hardening.

The given alloying system provides not only strong resistance against corrosion comparable with A2 steels, but also an excellent combination of mechanical characteristics (*Fig. 3*).

It is impossible to harden the austenitic steels and therefore the characteristics at the level of hardenable steels cannot be reached. This is a general distinction between both types. They are equal only from the aspect of resistance against corrosion.

Specifically martensitic stainless steels are used to produce self-drilling screws (*Fig. 4*). They are applied mainly to the outer sheathing of the building (*Fig. 5*) and to the isolation of various industrial installations such as boilers, filters and others.

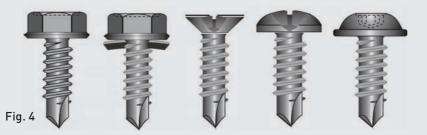


Fig. 5

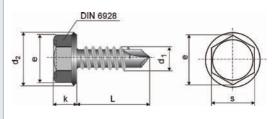
The Advantages:

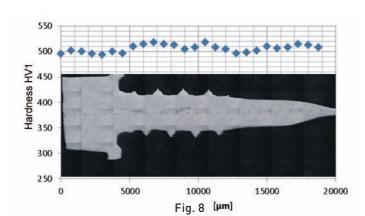
- costs saving because of an inlet pre-drilling operation absence
- no problems with reseating the inlets
- nut-free, clearance-free bolted joint
- simple logistics and rational assembly
- strong resistance against corrosion

In the following text we will become more familiar with these screws.

Metallographic and Chemical Analysis

We tested the DIN 7504K bolts ($d_1 = 4.2$ mm and $d_1 = 5.5$ mm from two different manufacturers) (*Fig. 6* and 7).




Fig. 6

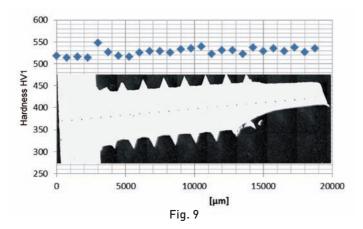


Fig. 7

Hardness:

The hardness of the screws was measured according to the Vickers method HV1 along the unetched cut screws. The measurement results are shown in *Figures 8* (d1=5.5mm) and *Figures 9* (d1=4.2mm).

Metallography:

On the unetched state the presence of microcracks was evaluated (*Fig. 10*). Microcracks occurred in specimen d_1 = 4.2mm and were likely to have occurred during the rolling of the screws. The microstructure was induced by the solution Kallings 2. Both samples were martensitic (*Fig. 11*), which corresponds to a hardened condition.

Fig. 10

Chemical Analysis:

The results of the chemical analysis determined by SPECTROMAXx spark emission spectrometer are shown in *Table 1*. Both steels were identical and matched to stainless steel of martensitic type.

Table. 1

[%]	С	Si	Mn	Cr	Мо	Ni
d1=4.2mm	0.319	0.312	0.228	13.91	2.08	0.926
d1=5.5mm	0.236	0.412	0.329	12.97	2.29	1.05

Montage Test:

The assembly test was carried out on the steel profile "L" of the thickness 4.5mm. Under these conditions, there were no differences between the groups. Samples of a diameter of 4.2 mm had a lower head (*Fig.* 7).

Conclusion

In terms of chemical composition of steel, microstructure and hardness, there were no significant differences between the samples. In all cases, it is a hardened martensitic stainless steel. Also, during the assembly, the samples behaved identically. Microcracks on the screws ($d_1 = 4.2mm$) did not appear negative during the assembly test.